Carro de la compra

No hay artículos en el carro

No hay artículos en el carro

13S 48V 54.6V 1.2A Li-ion Lipo Lifepo4 LFP Batería Ecualizador Activo BMS Balancer Equilibrador Inductivo Batería Litio Placa de Transferencia de Energía (13S)

Envío gratis en pedidos superiores a Mex $600.00

Mex $350.58

Mex $ 157 .00 Mex $157.00

En stock

Acerca de este artículo

  • Nota: Este PCB solo es adecuado para baterías 13S. La luz indicadora parpadeará e informará de un error si esta PCB se utiliza en otros paquetes de baterías. Antes de conectar la placa de ecualización, asegúrate de comprobar si cada batería está cableada correctamente (mide si el voltaje de cada cadena de batería es correcto) y haz un buen trabajo de aislamiento. de lo contrario se cortocircuitará y quemará la placa. Si el comprador cortocircuita y quema la placa, el comprador debe asumir la responsabilidad en lugar de devolverla.
  • Consejos: la placa de ecualización no es una placa de protección BMS, es un auxiliar a la placa de protección, por lo que no importa cuán mala sea la batería que uses para probar, se puede utilizar, pero no tiene función de protección contra sobretensión/sobredescarga. Sobretensión/sobredescarga es la función de la placa de protección BMS. Si se requiere protección de voltaje, lo mejor es usarlo en paralelo con la placa de protección BMS.
  • Tipo de batería aplicable: NCM (Li-ion)/LFP, no es compatible con LTO; rango de trabajo de voltaje único: 3.0V-4.2V; Capacidad de batería sugerida: debajo de 30 AH, si más de 30 AH, busca condensador más rápido en todo el grupo equilibrador "B096NLHXPF " para comprar. Tamaño de PCB aproximado: 3.5 x 3.1 x 0 x 0.1 x 0.2 pulgadas; Luz indicador; luz indicadora: LED equilibrequilibrequilibrequilibrequilibrequilibrprogresprogres; LED apagado, extremos de equilibrio; parpadeo LED: indicador de cadena de caída de la batería/fallo del circuito.
  • Método de equilibrio: detecta que la diferencia de voltaje entre las baterías adyacentes es mayor que 0,1 V para activar el inicio de la ecualización, y la diferencia de voltaje de la batería adyacente es menor que 0,03 V para dejar de funcionar. (Consejos: la placa de ecualización de inductancia debe cargarse/descargarse muchas veces antes de que la ecualización de voltaje pueda lograr un mejor efecto.)
  • Precisión de equilibrio de voltaje: 30 mV (valor típico) entre voltajes adyacentes; Corriente de equilibrio: 0,1 V < diferencia de voltaje adyacente <0,2 V, corriente equilibrada 0,5 A-0,7 A; diferencia de voltaje adyacente > 0,2 V, corriente equilibrada 1,0 A (máximo 1,2 A); protección de bajo voltaje inactivo: la tensión inactiva: la diferencia de voltaje adyacente diferencia de voltaje es menor que la diferencia de voltaje es menor que 0,2 A. V y entde 3V y entEstado inactivo, corriente de sueño 10uA.



Descripción del producto

1

El paquete incluye: 1 tabla de equilibrador activo 13S, 1 cable de 14 pines

Equipado con terminal PH2.0 por defecto, viene con cable de 1 pie 22awg.

Nota: Si la batería está conectada, debe utilizarse con la placa de protección BMS. La diferencia de voltaje de carga/descarga activa la tabla de equilibrio para trabajar para lograr el equilibrio de transferencia de energía.

Consejos: Este balanceador activo no es una placa de protección BMS, por lo que no importa cuán mala sea la batería que uses para probar, se puede utilizar, pero no tiene funciones como sobretensión, subtensión o sobrecorriente. Se requiere un BMS para gestionar todas esas cosas. Se recomienda usarlo en paralelo con la placa de protección BMS.

Nota: No se recomienda ser compatible con cuerdas bajas, la luz indicadora parpadeará e informará de un error. Antes de conectar la placa de ecualización, asegúrate de comprobar si cada batería está cableada correctamente y haz un buen trabajo de aislamiento. de lo contrario se cortocircuitará y quemará la placa.

Batería aplicable: NCM (Li-ion)/LFP, no compatible con LTO.

Voltaje de batería individual: 3.0-4.2 V

Capacidad de batería sugerida: por debajo de 30 AH, si hay más de 30 AH/balance de grupo completo, busca "B096NLHXPF".

Precisión de equilibrio de voltaje: 30 mV (valor típico) entre voltajes adyacentes

Método de equilibrio: Detecta que la diferencia de voltaje entre las baterías adyacentes es mayor que 0,1 V para activar el inicio de la ecualización, y la diferencia de voltaje de la batería adyacente es menor que 0,03 V para dejar de funcionar.

Corriente de equilibrio: 0,1 V diferencia de voltaje 0,5 A, la corriente máxima de equilibrio es de 1,2 A cuando la diferencia de voltaje es superior a 0,2 V.

Protección de bajo voltaje: voltaje inactivo: La diferencia de voltaje adyacente es inferior a 0,03 V y entra en estado inactivo.

Corriente de trabajo estática: 0,01 mA

Tamaño del producto: 3.9 x 1.7 x 0.25 pulgadas

Indicación de equilibrio:

1. Cuando el indicador de equilibrio está encendido, el trabajo de equilibrio está encendido.

2. El indicador de equilibrio apagado, el circuito de equilibrio duerme,

3. El indicador de equilibrio parpadea, cae celdas o el circuito está defectuoso.

2
3

Nota: El enchufe del cable debe insertarse oblicuamente, primero toca el pin "B-" e insértelo oblicuamente, de lo contrario puede causar que la placa se queme

B-: el polo negativo total de la batería (el polo negativo de la primera batería)

B1: El polo positivo de la primera batería

B2: El polo positivo de la segunda batería

B3: El polo positivo de la tercera batería

B4: El electrodo positivo de la cuarta batería

...... y así sucesivamente.


RaminG
Comentado en los Estados Unidos el 13 de marzo de 2025
March 17, 2025 Update: 2nd Balancer tested.These balancers breathed new life for my aging 48V 7.8Ahr ebike battery which suffers from high self-discharge imbalance issues. The second balancer will be integrated to my new 10Ahr Battery.Before for 500cycle Battery: only 20% capacity available due to imbalance. Multiple 'worn' batteries in the pack suffer from high self discharge and need to be individually charged to recover capacity.After: over 80% of original capacity available with Balancer constantly 'topping off' the weaker cells with high self-discharge.Key Balancer Requirements:1. Compatible with existing BMS (Battery Management System) including passive balance circuits.2. Very low standby (monitoring) current (0.01mA)3. Can balance over 3.0 to 4.2 Volt lithium battery range4. Has high balance current (.5 to .7A typical when Vdiff is between 0.1 and 0.2V)Balancer Review:1. Cost: Very reasonable price.2. Features: Status LED’s on PCB for each cell pair very helpful in debug and monitoring. Good Battery cell connectors and wiring harness. Size is small enough for most battery packs.3. Fit and Finish: Good. Balancer PCB components and traces are covered with protective film.4. Documentation: Inadequate. None supplied with product. Website instructions are somewhat sparse and awkwardly written.5. Installation: Straight forward but not error-tolerant. Significant time needed to thoroughly test all 12 circuits. Fourteen Balance wires need to be soldered while live to each of the 13 batteries in the correct order. Warning! Reversing Voltage polarity or shorting wires together may short out the TVS Protection diodes! (B0 should be 0V and B14 should be 46-55V).6. Quality: Needs improvement. Board #1 shorted out due to user wiring error which shorted 4 of the TVS Protection Diodes. Board #2 had 1 or 2 bad circuits (one cell position did not start balancing). Replacement board #3 and new #4 had no faults. One has to explicitly test each all 12 Balance circuits for balancing functionality.7. Performance: Good. Balance current 300-500mA with neighboring cell Voltage difference between 0.1 to 0.2A. Current of greater than 2000mA with a greater than 0.6V imbalance!8. Reliability: Short term good. Each of the 12 circuits are protected by a TVS protection diode and PCB surface-mount components appear robust and well protected (i.e. no electrolytic capacitors; all components are sealed and insulated). Continuous monitoring over a week: Pass800mA long-term balancing stress test: PassHow does this Inductive Active Balancer work? (See Attached Schematic)This 13 Lipo cell Balancer consists of 12 identical circuits which are individually connected across each of the 12 pairs of series connected battery packs. Each circuit has a 2cell Active BiDirectional Inductive monitor/balancer very low standby current IC. Each circuit continuously monitors the voltages and voltage-differences of the connected battery pair (running on a 2 second monitor/balance cycle). If a voltage difference of greater than 100mV is detected, the circuit switches it’s “charge-storage” inductor to the higher voltage battery and then switches the now-charged inductor to the lower cell which accepts the charge. This cycle repeats at about 1Mhz until the pair’s differential voltage is about 30mV. All 12 circuits are always ON (always monitoring their respective cell pairs) and can start balancing simultaneously during charge, discharge and storage.NOTE: Although each circuit independently monitor's it's dedicated cell pair, they are all daisy-chained together and synchronize their 2-second monitor/balance cycle. Therefore, all 12 circuits should be connected to the series connected 13S battery pack.Purpose of adding this Balancer to my Ebike Battery Pack:This Inductive Active Balancer was purchased to extend the life of the aged Battery pack (even the leaky cell pack had at least 80% effective charge capacity if recharged). It is wired in parallel to the existing BMS balancing wires and is expected to work in parallel with the BMS. Without the higher current Active Balancer, the high self-discharge cell would need periodic custom individual balancing.About the Lithium Ion Battery Pack used:The 48V 7.8Ahr pack consists, in this case, of 39 18650 LiPO 2.6Ahr batteries wired in a 3P13S parallel configuration. There is a BMS wired to the pack which controls discharging and charging and checks for Overtemp, UnderVoltage Overcurrent, and Overvoltage conditions. Each of the 12 series-wired cell packs are also monitored. The BMS supplied is capable of passive cell balancing through low current resistors whereby the higher voltage neighbor drains to the lower cell to equalize voltage. This balance circuit can only supply a few milliamps and works well until the cells begin to age and one or more start to exhibit abnormally high self-discharge (voltage leaks). If the integrated passive balancer cannot keep up, BMS limits the effective capacity of the pack to the lowest cell pack. Note that, for each 100mV imbalance difference, one loses about 10-20% of the effective capacity. In my case, the BMS of my 7.8Ahr 48V Ebike shutdown my pack after only about 1.5Ahr drain. This was caused by the low voltage (leaky) cell eventually dropping to less than about 3.0V while the other cell voltages were much higher. The BMS detected this undervoltage cell and switched the battery off.Installation and Checkout summary: (See photo)1. Installation. Before soldering the 14 balance wires from the connectors to the batteries: DO NOT Connect the two connectors to the PCB. It is also best if the battery pack is partially discharged.a. Starting with the B- (Black) wire (lowest voltage) solder each wire to each battery tab.b. Carefully connect the two keyed connectors to the PCB.c. Inspect the 12 status LED’s for activity:i. None On: all 12 circuits in sleep (dormant) mode.ii. 1 or more flashing every 2 seconds: Circuit Fault or open cell. Check wiring. Note, occasional flashing episodes can be ignored. A flash every two seconds represents a faulty circuit or bad cell.iii. 1 or more LED’s are on indicating active balancing is in progress. Check the two adjacent battery pair voltages and confirm that the V-difference is >0.1V.2. After installation, the balancer circuits will remain dormant until a Voltage Difference of >0.1V is detected. This may happen during or after a charge or discharge cycle or if an aged battery cell has a large voltage drop due to voltage leakage over many days of storage.3. Balancer #3 Checkout Tests:a. Test 1: Compatible with existing BMS? Test Battery pack during Idle, Discharge and Charge cycle: Passb. Test 2: Imbalanced Pair test for each of the 12 circuits: Connect battery pair with known Imbalance: Passi. 0.1V Imbalance: Finished balancing with ii. 0.6V Imbalance: Finished balancing with iii. Check with reverse order imbalance: Passc. Test 3: Continue monitoring overnight with Test 2 setup: Passi. Balance completed: Passii. No Flashing LED’s: Passd. Test 4: 1 week continuous connection to Battery pack with a leaky cell (high self discharge): Passi. No Flashing LED’s: Passii. Balancing triggered for leaky cell discharge to >0.1V neighboring cell imbalance: Passiii. Balancing triggered after discharge cycle: Pass (3 cell pairs balanced)iv. Balancing trigged after charge cycle: Pass (1 cell pair balancede. Test 5: Maximum Imbalance Stress test: Passi. Subject one circuit with a battery pair imbalance of 0.8V (4.1 vs 3.3V) and monitor until balancing is competed: Passf. NEW Test 6: Test all 12 circuits together with 13cell Cell Balance Jig (See Photo): PassInsert a low Voltage Cell (0.6V lower than others) in each of the 13 cell positions of the Jig and confirm Balancing and current. PassOther Observations:1. High Current Balancing loads down neighboring cells by up to 100mV and therefore triggers other balance pairs. (See Photo where one LowV cell creates >2Amp balance current and triggers balancing of 3 other neighbors).2. Balance trigger varied from 80 to above 100 mV.3. Actual balance miss-match after balancing is greater than 30mV (40mV Typical). In the case of extreme imbalance, the low cell recovery may still be more than 50-100mV difference from neighbors.4. Maximum balance current of 2A observed with >0.5V Imbalance.5. Unstable cells (due to high discharge rate of aged cells) will trigger frequent balancing events (LED Triggering).6. The 12 balance circuits are daisy-chained and will influence each other. Therefore, all balance circuits need to be connected for optimum results. Balance Faults are 2 Second Interval LED flashes. However, other intermittent LED flashes occur over long-term operation.
Ian
Comentado en los Estados Unidos el 26 de febrero de 2022
I wired 2 6S batteries in series and connected the balancing board for 12S. I was fine at first. But when I added leads from a battery charger, it started discharging the lowest cell as fast as possible. I disconnected it and checked for a difference between voltages. There was none.
Productos recomendados